新葡京娱乐赌场-澳门葡京娱乐网站

首頁 > 講座預告 > 正文

講座預告

首頁 > 講座預告 > 正文

【韶風名家論壇】Convexity, Sparsity, Nullity and all that … in Machine Learning

發布時間 : 2017-03-28 00:00    點擊量:

分享:
報告時間
講座類型
報告題目:Convexity, Sparsity, Nullity and all that … in Machine Learning
主 講 人:Hamid Krim,北卡羅來州立大學教授,IEEE Fellow 
 
報告人簡介:
  Hamid Krim, 現任美國北卡羅來納州立大學電子與計算機工程系教授,研究興趣為統計信號和圖像分析、應用問題的數學建模。Krim教授曾擔任AT&T貝爾實驗室、麻省理工大學研究專家;曾獲貝爾實驗室杰出成績獎,美國國家科學基金會職業成就獎。目前,Krim是IEEE Transactions on Signal Processing的副主編IEEE Signal Processing Magazine的編委會成員,SPTM和Big Data Initiative的程序委會員會成員,2008年成為IEEE Fellow,被評為2015-2016年IEEE SP Society Distinguished Lecturer。
 
報告摘要:
  High dimensional data exhibit distinct properties compared to its low dimensional counterpart; this causes a common performance decrease and a formidable computational cost increase of traditional approaches. Novel methodologies are therefore needed to characterize data in high dimensional spaces.
  Considering the parsimonious degrees of freedom of high dimensional data compared to its dimensionality, we study the union-of-subspaces (UoS) model, as a generalization of thelinear subspace model. The UoS model preserves the simplicity of the linear subspace model, and enjoys the additional ability to address nonlinear data. We show a sufficient condition to use l1 minimization to reveal the underlying UoS structure, and further propose a bi-sparsity model (RoSure) as an effective algorithm, to recover the given data characterized by the UoS model from non-conforming errors/corruptions.
  As an interesting twist on the related problem of Dictionary Learning Problem, we discuss the sparse null space problem (SNS). Based on linear equality constraint, it first appeared in 1986 and hassince inspired results, such as sparse basis pursuit, we investigate its  relation to the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may naturally be exploited  to solve dictionary learning problems.
  Substantiating examples are provided, and the application and performance of these approaches are demonstrated on a wide range of problems, such as face clustering and video segmentation.
 
主持人:歐陽建權教授,湘潭大學信息工程學院副院長
時 間:2017年3月30日下午2:00
地 點:工科樓北樓201
 
歡迎廣大師生參加!
 
湘潭大學信息工程學院
智能計算與信息處理教育部重點實驗室
2017年3月28日

關閉

友情鏈接:

地址:中國湖南湘潭  郵編:411105

版權所有?湘潭大學 (湘ICP備18021862號-2) 湘教QS3-200505-000059

湘公網安備 43030202001058號    

澳门百家乐送彩金| 新2百家乐现金网百家乐现金网| 免费百家乐官网游戏机| 百家乐有哪些注| 衡南县| 唐朝百家乐的玩法技巧和规则| 鑫鼎百家乐官网的玩法技巧和规则 | 百家乐连线游戏下载| 网上百家乐官网内幕| 大发888优惠活动| 百家乐官网用品| 赌博百家乐的乐趣| 赤壁百家乐官网娱乐城| 鼎丰娱乐城| 大发888娱乐城dknmwd| 百家乐赌博牌路分析| 百家乐分路单析器| 百家乐官网注册开户送现金| 大发888官网46| 24山向吉凶详解视频| 永利高百家乐官网现金网| 大发888娱乐城在线客服| 大佬百家乐官网娱乐城| 百家乐官网龙虎的投注法| 栾川县| 大发888娱乐总代理qq| 澳门百家乐必赢技巧| 百家乐扑克牌耙| 网上赌百家乐官网有假| 百家乐官网赌场破解方法| 百家乐官网软件骗人吗| 百家乐平台| 1368棋牌官网| 大发888怎么打不开| 在线百家乐作弊| 菲律宾百家乐赌场娱乐网规则| 百家乐官网信誉好的平台| 太阳城公司| 威尼斯人娱乐城易博| 百家乐在线娱乐网| 百家乐赌场娱乐城大全|